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THE k-DIMENSIONAL DISTRIBUTION OF 
COMBINED GFSR SEQUENCES 

SHU TEZUKA 

ABSTRACT. We develop an efficient method for analysis of the k-dimensional 
distribution of combinations of several GFSR sequences by bitwise exclusive-or 
operations. First, we introduce the notion of a resolution-wise lattice structure 
for GFSR sequences, and show that by applying a theorem of Couture to this 
type of lattice, we obtain a precise description of k-dimensional distribution 
of combined GFSR sequences in the same way as for combined Tausworthe 
sequences. Finally, we apply this method to the combination of two different 
Twisted GFSR generators, which were recently proposed by Matsumoto and 
Kurita, and investigate the order of equidistribution of the combined sequence. 

1. INTRODUCTION 

Couture et al. [ 1 ] have recently developed an efficient method to give a precise 
description of how all the k-dimensional vectors formed by successive values of 
simple or combined Tausworthe sequences are distributed in the unit hypercube, 
based on their lattice structure in the space of formal Laurent series over GF(2) . 
This method can be applied to a special subclass of GFSR sequences as well 
as their combinations with bitwise exclusive-or operations (XORs) if they can 
be formulated as linear congruential sequences in the field of formal Laurent 
series over GF(2), but it cannot be applied to general GFSR sequences such 
as Twisted GFSR generators proposed by Matsumoto and Kurita [6]. These 
generators, a subclass of GFSR sequences, have the attractive property that 
they can generate very long-period GFSR sequences, using a minimum amount 
of memory, almost as fast as the conventional GFSR algorithm, but it has been 
found that all simple Twisted GFSRs have a deficiency of uniform distribution 
properties in dimensions higher than the degree of the recurrence relation. For 
this reason, the XOR-combination of Twisted GFSRs has been investigated as 
a possible way to overcome this defect. As stated above, however, the problem 
is that we lack an efficient method for investigating combined Twisted GFSRs. 

The objective of this paper is to develop a theoretical tool for analysis of 
the k-dimensional distribution of XOR-combinations of general GFSRs on the 
basis of Couture's theorem [1]. The paper is organized as follows: ?2 overviews 
the definition of combined GFSR sequences and Couture et al.'s results for 
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the lattice structure of combined Tausworthe sequences. In ?3, we develop 
a method for analysis of the k-dimensional distribution of combined GFSR 
sequences. First, we introduce the notion of a resolution-wise lattice for GFSR 
sequences, and show that we can apply Couture's theorem to this type of lattice, 
thereby obtaining a precise description of the k-dimensional distribution of 
GFSR sequences in the same way as for combined Tausworthe sequences. In 
?4, we give an example in which our approach is applied to a combined Twisted 
GFSR in practical use with a period length of about 21200. Section 5 discusses 
the efficiency of our approach. 

2. OVERVIEW 

2.1. GFSR sequences. An ( L-bit) GFSR sequence ui, i = 1, 2, ... , is origi- 
nally defined as follows [5]: 

L 

(1) Ui=Zbdj+i2', 
j=1 

where bj, j = 1, 2, ..., is a linear feedback shift register sequence modulo 
two whose characteristic polynomial M(z) is primitive over F2. Lewis and 
Payne [5] suggested that d should be greater than 1 OOr, where r = deg(M) . In 
addition, they employed a primitive trinomial as the characteristic polynomial 
of the binary sequence bj, j = 1, 2, ... , in order to realize a fast generation 
scheme for the sequence in the following way: Let M(z) = zr + ZS + 1 (r > s). 
The sequence can then be generated by the scheme 

ui = ui_r+s XOR Ui-r. 

However, this algorithm is unsatisfactory in the sense that the period 2r - 1 is 
much smaller than the maximum possible period 2Lr - 1 attainable by using r 
L-bit words. 

A more general version of the sequence is defined, for i = 1, 2, ..., as 

L 

(2) U= bj,+i2-, 
1=1 

where jI, / = 1, ..., L, are integers between 0 and 2r - 1, and the charac- 
teristic polynomial M(z) is any primitive polynomial [3, 8, 9]. As shown in 
[12], Tausworthe sequences can be viewed as a subclass of GFSR sequences. 

The matrix representation of shift register sequences is very useful. Let C be 
the companion matrix of the polynomial M(z) = zr + ar- 1 zr- I +* + a, z + aO, 
namely, 

0 0 **.. ao 
1 0 0 a, 

o ... 1 o ar-2 
0O O . 1 ar- 1 
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and let b= (bo, ..., br-i) be a nonzero binary vector. The general GFSR 
sequence is then written as follows: 

bG, bCG, ...,bC'G,.... 

where G is an r x L matrix over F2 whose /th column vector, denoted by 

G1, / = 1, ..., L, is uniquely determined by the equations, 

bjl+i = (Gl, bC'-1) for i= 1, ..., r. 

Here (a, b) means the inner product of the binary vectors a and b over F2 . 
Now, we give some definitions relevant to the k-dimensional distribution of 

GFSR sequences. Let S(l, k) = {ajh+i 1 < i < k, 1 < h < / (< L)}, where 
a is the root of M(z). 

Definition 1. A GFSR sequence is said to be k-distributed with i-bit resolution 
if S(l, k) is linearly independent, but S(l + 1, k) is not, for some / < L. 

The following is also useful: 

Definition 2. A GFSR sequence is said to have the order of equidistribution k 
for the leading / bits if S(l, k) is linearly independent, but S(l, k + 1) is not. 

Twisted GFSR generators were recently defined by Matsumoto and Kurita 
[6]: 

(3) vi = vi-r+s XORvi-rA for i = r + 1, r + 2,... 

where vi, i = 1, 2, ..., is a sequence of vectors in F2L, A isan LxL 
matrix over F2, and r > s. The parameters r, s, and A are chosen so that 
the maximum period of the sequence vi, i = 1, 2, ... , becomes 2Lr - 1. In 
particular, Matsumoto and Kurita analyzed the following special case, which is 
very useful for quick generation of the sequences: 

(4) Vi = Vi-r+s XORvi-rCT, 

where vi, i = 1, 2,..., is a sequence of vectors in F2L, C isan LxL 
companion matrix, and r > s. The conversion from a binary vector v= 
(v0, . V.L. , V1) to a random number between 0 and 1 is as follows: 

L-1 

U = 2L Ev2 

i=O 

Their paper lists some parameters of the Twisted GFSR in (4) with maximum 
periods. Note that Twisted GFSRs with maximum period lengths 2Lr - 1 can 
be formulated as in (2) with bj, j = 1, 2, ..., being a shift register sequence 
of maximum period 2Lr - 1. 

One of the advantages of this scheme is that the size r of an array is the 
minimum necessary to produce GFSR sequences with the period length 2Lr - 1 
with respect to the wordsize L. In this sense, the scheme can be viewed as an 
improved version of the lagged Fibonacci scheme with XOR, because the latter 
produces a period 2r - 1 of a sequence with an identically sized array of r 
L-bit words. Another important merit is the fast generation algorithm, which 
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is as follows: Let vi = (v ..., vi,L-1) and a= (ao, ..., aLp1). The rest is 
very simple: 

if Vjir,L-I = 0 then vi = vi-r+sXORSR(vi-r) 
else vi= vi-r+s XOR SR(vi_r) XOR a, 

where SR is the one-bit right-shift operation. 
However, the following result has been found [12]: 

Proposition 1. Any Twisted GFSR in (4) is k-distributed with at most 2-bit res- 
olution for all k > r. 

After this finding, Matsumoto and Kurita [7] investigated more general 
Twisted GFSRs, i.e., A = PCTP-I in (3), where P is an L x L nonsingular 
matrix over F2, to obtain the following: 

Proposition 2. Any Twisted GFSR in (3) has an order of equidistribution of at 
most r[L/l] for the leading / bits. 

Note that the maximum order of equidistribution for GFSR sequences with 
a period 2Lr - 1 is [Lr/l] for the leading / bits. In addition, we already 
have empirical evidence [2, 10] that it is easy to find GFSR sequences having 
the maximum order of equidistribution for any number of leading bits. For 
example, comparing [Lr/l] = 66 with r[L/l] = 50 for 1 = 12, L = 32, and 
r = 25, we see that Twisted GFSRs in (3) are not satisfactory compared with 
general GFSRs. 

Thus, the current research on Twisted GFSR generators is to find opti- 
mal sequences in the above sense. One idea is to combine several Twisted 
GFSRs, since Tezuka and L'Ecuyer [13] showed that combinations of Taus- 
worthe sequences are an efficient approach to obtaining sequences with desir- 
able properties in high dimensions. In general, we define the combined GFSR 
sequence as follows: 

Ui = u5') XOR .XOR u7J), 

where for j = 1, ..., J, each sequence u j), = 1, 2,..., is a GFSR se- 
quence. In this paper, we assume the periods of components are pairwise co- 
prime, so that the period of the combined sequence Ui is equal to the product 
of all the periods of u j-i ..., J. 

2.2. Couture's Theorem. Following Couture et al. [1], we use the following 
operators: 

12 
frac(x) = a-lz- +cr_2z +a. 

trunc1(x)=a,z'+an-IznI + + .+a_lZ 1 

where x is an element in the field K of formal Laurent expansions (at infinity) 
with coefficients in the Galois field F2: 

(5) x = anzan + ienrazn-i / . Z. 

where n is any integer and 1 e- Z. 
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Define a non-Archimedean valuation in K by 

JO if x =0, 
lxl 2n if x70 and x isgivenby(5) with anc0 . 

Let k denote a positive integer. The vector space Kk is then normed by 
lIXIi = maxl<i<k Ixil, where X = (xi, ... , xk). Let A = F2[z] be the subring 

of polynomials. We call a free A-submodule of Kk a lattice. 

Definition 3. Let X1, . .. , Xh be points in a lattice Y c Kk of rank h. We 
call X1, ... , Xh a reduced basis of Y over A (in the sense of Minkowski) 
if the following properties hold: 

(i) X1 is a shortest nonzero vector in Y 
(ii) for i = 2, ... , h, the vector Xi is shortest among the set of vectors X 

in Y such that X1, ... , Xi-I, X are linearly independent over A. 

The numbers ai = lIXill > 0 are then uniquely determined by the lattice, 
and Si = lg2 ai for i = 1, ... , h are called its successive minima. Lenstra [4] 
gives details of how to compute these numbers efficiently. 

Let C(k) = {X I IIXII < 2r}, r E Z. Then, one can view Y n C(k) as a vector 
space over F2, with cardinality 2d, where d is its finite dimension over F2. 
The next theorem shows that the number 2d of lattice points in the cube C(k) 
is determined by r and the lattice's successive minima. 

Theorem 1 (Couture). We have 

h 

d = Z(r - si)+, 
i=1 

where t+ denotes max(t, 0) for a real number t. 

For each integer / > 0, let E(k) = trunc1 (C() , where trunc1 is applied com- 
ponentwise. Let S be a subset of C(k). We now define a frequency function 
f:E(k) N U{0} by 

f (X) = card{R E S I trunc1(R) = X}. 

The set E(k) corresponds to a partition of the hypercube [0, 1 )k into 21k cubic 
cells of the same size. We note that, if X E E(k) and R E S, the condition 
trunc1 (R) = X means that the point in the k-dimensional Euclidean space 
corresponding to R lies inside the cube H1kI [xi, xi + 2-1), where xi is the 
real number corresponding to the ith coordinate of X, and fi(X) is then the 
number of such points R E S falling into this cube. For each integer n, let 

(6) (1,k(n) = card{X E E(k) I f(X) =n, 

which represents the number of cells that contain exactly n points. Couture et 
al. [1] investigated the point set S obtained from linear congruential sequences 
in K, and developed an efficient method to calculate (O1,k(n) by using the 
above theorem. We will be concerned in the next sections with the problem 
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of computing 91, k (n) efficiently for the point set S obtained from combined 
GFSR sequences. 

3. MAIN RESULT 

First, we give the definition of the resolution-wise lattice of GFSR sequences. 

Definition 4. Let a GFSR sequence be given as in (2). Let gl(z) = zil (mod 
M(z)) with deg(gl) < deg(M) for I = 1, .. ., L. Then we define the resolution- 
wise lattice of the sequence as follows: for each / = 1, 2, ... , 

Y =ARo+ A', 

where 
Ro= (gi/M, ..-, g1/M). 

The ordinary lattice can be called the "dimension-wise" lattice, and is useful 
for the analysis of simple and combined Tausworthe sequences [ 1]. However, as 
I have pointed out in [1 1, 12], the general GFSR sequences cannot be formulated 
as linear congruential sequences in K. Hence, it is difficult to directly apply 
Couture's theorem to the analysis of their k-dimensional distribution. That is 
why we introduced the notion of a resolution-wise lattice. The following results 
show the usefulness of this notion. 

Proposition 3. For a simple GFSR sequence ui, i = 1, 2, ..., in (2), define 
Ri = frac(zRi_ ), i = 1, 2 . where frac is applied componentwise. Then 
we have 

(o1,k(n) = Pk,I(n), 

where 91,k(n) corresponds to the point set S = {(ui,,- , + i = 1, 
2, ...}, and 9k 1 (n) corresponds to S = {Ri, i = 1, 2, ..., trunck(R,) = X 

for XeE(')}. 

Proof. This follows from the fact that both p1,k(n) and k, l(n) correspond to 
S(l, k). o 

Since the evolution of Ri, i = 1, 2, ..., gives 2r - 1 distinct points in 
2' n Cl, we can exploit Couture's approach to calculate ik, 1(n), i.e., 91,k(n). 
We obtain the following result based on Couture et al. [1, Corollary 1]. 

Proposition 4. A simple GFSR sequence has the order of equidistribution -sl for 
the leading I bits, where s, is the lth successive minimum of the resolution-wise 
lattice associated with the sequence. 
Proof. Switch the interpretation of resolution and dimension in Couture et al. 
[1, Corollary 1]. o 

Now, we have the main result: 

Proposition 5. For a combined GFSR sequence Ui, i = 0, 1, ... , define Ri = 

R1l) XOR. . . XOR Ri). Then we have 

91,k(n) = OkI(n) 
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where P1,k(n) corresponds to the point set S = (Ui , Ui+k-l), i = 1, 2, 
...}, and qk,1(n) corresponds to the set S = {Ri, i = 1, 2, ..., 

trunck(Ri) = X for X E E(1)}. 

Proof. This follows from 

Pi = Rk1) XOR... XOR RV) = frac(zRk1),) XOR... XOR frac(zR7V) 

= frac(z(Rk) XOR. XORR(.V)) = frac(zRfi_). ? 

4. EXPERIMENTAL RESULT 

We apply the above results to the analysis of the orders of equidistribution 
for the combination of two Twisted GFSRs, both obtained by Matsumoto and 
Kurita [6]. One is (L, r, s) = (31, 13, 2) with (ao, ... , aL_-) = 6B5ECCF6 
(in hexadecimal) and the other is (L, r, s) = (32, 25, 7) with (ao, *.. , aL-l ) 
= 8EBFDO28 (in hexadecimal). Note that the periods 2 40- 1 and 
2800- 1 are co-prime, thus the resulting combined sequence has a period of 
(2403- 1)(2800- 1). 

Since showing k, I(n)'s for all k, / requires a huge table, we give here only 
condensed information about the k-dimensional distribution of the combined 
Twisted GFSR in Table 1. (In the appendix, we add tables for the successive 
minima si, i = 1, . . . , k, for all lattices, on the basis of which we can quickly 
calculate Ok,l(n) for any k, / in the same way as Couture et al. [1].) To 
explain Table 1, we first generalize Definition 2 to the case of combined GFSR 
sequences based on Proposition 4. 

Definition 5. A combined GFSR sequence is said to have the order of equidis- 
tribution -sl for the leading / bits, where s5 is the lth successive minimum 
of the resolution-wise lattice associated with the combined sequence. 

Note that for the same reason as discussed in Couture et al. [1], roughly 
speaking, combined GFSRs have good k-dimensional distribution properties if 
their orders of equidistribution are close to the maximum. In this sense, the 
combined sequence in Table 1 looks no good in almost all resolutions up to 30. 

TABLE 1. The order of equidistribution -sl for the combina- 
tion of two Twisted GFSRs, (32, 25, 7) and (31, 13, 2), for 
resolutions / = 2, ... , 31 

resolution l 2 3 4 5 6 7 8 9 10 11 
Max. order (= [1203/1]) 601 401 300 240 200 171 150 133 120 109 
order of equidistribution 428 73 51 38 38 38 38 38 38 38 
resolution 1 12 13 14 15 16 17 18 19 20 21 
Max. order (= [1203/1]) 100 92 85 80 75 70 66 63 60 57 
order of equidistribution 38 38 38 38 38 38 38 38 38 38 
resolution 1 22 23 24 25 26 27 28 29 30 31 
Max. order (= [1203/1]) 54 52 50 48 46 44 42 41 40 38 
order of equidistribution 38 38 38 38 38 38 38 38 38 38 
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5. DISCUSSION 

As shown in [12], the original GFSR sequences defined in (1) can be formu- 
lated as linear congruential sequences in K. Thus, the k-dimensional distri- 
bution of this class of sequences can be analyzed by using the dimension-wise 
lattice structure as well as the resolution-wise one. Taking this case, we consider 
the advantage of the approach based on the resolution-wise lattice with respect 
to practical efficiency. Lenstra [4] shows that his basis reduction algorithm runs 
in O(B2k4) , where B is the degree of M(z) and k is the maximum number of 
dimensions. Therefore, if we use the conventional dimension-wise lattice anal- 
ysis for high-dimensional behavior of GFSR sequences, the values of k and 
B are usually 500 or more. On the other hand, in the case of resolution-wise 
lattice analysis, while B is just as large, k is at most 32 (for a 32-bit computer). 
Obviously, the latter approach is practically better. 
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6. APPENDIX: SUCCESSIVE MINIMA FOR THE TWO TWISTED GFSRs 
AND THEIR COMBINATION 

TABLE 2. The first successive minimum -s1 of the resolution- 
wise lattice in resolutions 2 to 31 for the Twisted GFSR with a 
period of 2403 - 1 . All other successive minima S2, ... , s1 are 
equal to -13 for all resolutions 

res. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

-S1 390 377 364 351 338 325 312 299 286 273 260 247 234 221 208 

res. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
-S1 195 182 169 156 143 130 117 104 91 78 65 52 39 26 13 

TABLE 3. The first successive minimum -sl of the resolution- 
wise lattice in resolutions 2 to 31 for the Twisted GFSR with a 
period of 2800 - 1 . All other successive minima S2, .. ., s1 are 
equal to -25 for all resolutions 

res. 2 3 4 4 5 [6 7 7 8 9 10 1 4 12 13 14 15 16] 
-S1 775 750 725 700 675 650 625 600 575 550 525 500 475 450 425 

res. 7 18 19 20 21 22 23 24 125 126 127 128 29 130 1311 
-S1 400 375 350 325 300 275 250 225 200 175 150 125 100 75 50_ 
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TABLE 4. The successive minima sl, ... , S4 of the resolution- 
wise lattice in resolutions 2 to 31 for the combined Twisted 
GFSR with a period of (2403 - 1)(2800 - 1) . All other successive 
minima S5, ... , s, are equal to -38 for all resolutions I = 
5,... ,31 

res. 2 3 4 5 6 7 8 9 10 I 1 12 [ 13 14 15 16 
-S1 775 750 725 700 675 650 625 600 575 550 525 500 475 450 425 
-S2 428 380 367 354 341 328 315 302 289 276 263 250 237 224 211 

-S3 - 73 60 60 60 60 60 60 60 60 60 60 60 60 60 
_S4 - - 51 51 51 51 51 51 51 51 51 51 51 51 51 

res. . 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
-S1 400 375 350 325 300 275 250 225 200 175 150 125 100 75 50 
-S2 198 185 172 159 146 133 120 107 94 81 68 58 51 47 44 
-S3 60 60 60 60 60 60 60 60 60 60 60 57 51 47 142 
-S4 . 51 51 51 51 51 51 51 51 51 51 51 51 51 46 141 
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